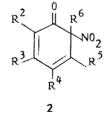
IPSO NITRATION: NITRATION OF 2-ALKYLPHENOLS IN ACETIC ANHYDRIDE. FORMATION OF 6-ALKYL-6-NITROCYCLOHEXA-2,4-DIENONES

By Alfred Fischer* and George N. Henderson


Department of Chemistry, University of Victoria, Victoria, B.C., Canada V&W 2Y2

Summary: Low temperature nitration of 2-alkylphenols in acetic anhydride gives 6-alkyl-6-nitrocyclohexa-2,4-dienones. The dienones undergo a regiospecific rearrangement to give o-nitrophenols.

Formation of 4-alkyl-4-nitrocyclohexa-2,5-dienones (e.g. 1a) in the nitration of phenols which are fully substituted in the reactive 2, 4 and 6 positions (e.g. mesitol) has long been known.^{1,2} More recently 4-alkyl-4-nitrocyclohexa-2,5-dienones (e.g. 1b) have been obtained from simple 4-alkylphenols (e.g. p-cresol) and their derivatives.³⁻⁶ The analogous formation of the 6-alkyl-6-nitrocyclohexa-2,4-dienones, from 2-alkylphenols, has not been established. Coombes and co-workers suggested the possible intermediacy of 6-methyl-6-nitrocyclohexa-2,4-dienone (2c) in the nitration of 2-methylanisole, in order to account for the formation of 6-nitro-o-cresol.⁷ However, they did not detect the formation of a dienone intermediate in the similar nitration of o-cresol although under the same conditions they were able to detect (uv) the formation of an intermediate, assumed to be the 2,5-dienone 1b, in the nitration of p-cresol.

We wish to report the ready formation of 6-alkyl-6-nitrocyclohexa-2,4-dienones (2) in the low temperature nitration of 2-alkylphenols in acetic anhydride and their specific 1,3 rearrangement to give 2-alkyl-6-nitrophenols. Nitration of *o*-cresol using nitric acid in acetic anhydride (mole ratio of substrate : nitric acid : acetic anhydride $_1 : 1.5 : 20$) at $_{60}$ °C for 3 h gave 2c (60%), 4-nitro-o-cresol (17%) and 6-nitro-o-cresol(23%). When the mixture was warmed to $_{20}$ °C, the dienone rearranged with a half-life of 8 min to give 6-nitro-o-cresol. Nitration of *p*-xylenol at $_{40}$ °C for 30 min gave dienone 2d (95%), 2,5-dimethyl-6-nitrophenol (4%) and 2,5-dimethyl-4-nitrophenol (1%). When the reaction mixture was worked up by the ammonia method⁸ the dienone 2d rearranged to give 2,5-dimethyl-6-nitrophenol as the only isolatable product.

 R^2 0 R^6 R^5 R^4 NO_2

- a $R^{2}=R^{4}=R^{6}=Me$; $R^{3}=R^{5}=H$ c $R^{6}=Me$; $R^{2}=R^{3}=R^{4}=R^{5}=H$ e $R^{6}=Me$; $R^{2}=R^{4}=D$; $R^{3}=R^{5}=H$ g $R^{3}=R^{5}=R^{6}=Me$; $R^{2}=R^{4}=H$ i $R^{3}=Me$; $R^{6}=i-Pr$; $R^{2}=R^{4}=R^{5}=H$
- b R^4 = Me; $R^2 = R^3 = R^5 = R^6 = H$ d $R^3 = R^6 = Me$; $R^2 = R^4 = R^5 = H$ f $R^5 = R^6 = Me$; $R^2 = R^3 = R^4 = H$ h $R^4 = R^6 = Me$; $R^2 = R^3 = R^5 = H$

In a separate experiment, monitored by nmr, the temperature of the reaction mixture was raised to 0⁰C and the dienone was observed to rearrange to the same nitrophenol.

The dienone 2c was identified from its ¹H nmr spectrum at -60 ^oC in acetic anhydride: δ 6.17 (d, 1, 2-H), 6.58 (4-H), 6.60 (5-H) and 7.31 ppm (8 lines, 1, 3-H), $J_{2,3}=9.9$, $J_{3,4}=6.7$, $J_{3,5}=0.8$, $J_{4,5}=9.8$ Hz. Chemical shifts and coupling constants were obtained by computer refinement of the simulated spectrum. Assignment of the peaks in the spectrum was facilitated by the spectrum of the dideuteriodienone 2e (δ 6.60 (br s, 1, 5-H) and 7.31 ppm (br s, 1, 3-H)) obtained by the nitration of the 4,6-dideuterio-o-cresol as well as by the spectrum of the dienone 2d (δ 6.03 (br s, 1, 2-H), 6.47 (d, 1, $J_{4,5}=10$ Hz, 4-H), and 6.57 ppm (d, 1, J=10 Hz, 5-H)). Further evidence for the formation of dienone(s) comes from nitrations carried out in [$^{2}H_{6}$] acetic anhydride in which it was possible to observe the upfield shift of the o-methyl group due to the change in the hybridization of the ring carbon to which it is attached. Thus in the case of o-cresol, the methyl group shifted from δ 2.17 to 1.74 ppm. Similarly in p-xylenol it shifted from δ 2.11 to 1.71 ppm.

The rearrangement of the 2,5-dienones 1 to give o-nitrophenols is well established.^{3,5,9.} However, the rearrangement of the 2,4-dienones 2 to give o-nitrophenols, observed here, takes place even when the equally reactive para position is vacant. This implies that there is some bonding interaction between the oxygen and the migrating nitro group.⁷ The formation of 2,4 dienones 2 and their rearrangement to o-nitrophenols suggests that the high ortho-para ratios observed⁷ in the nitration of 2-alkyphenols may, at least in part, be attributed to the formation and rearrangement of these intermediates.

Dienones 2f and 2g were obtained on nitration of the corresponding phenols. 2,4-Dimethylphenol gave both *lh* and 2*h*. Thymol gave 2*i*. The formation of 6-alkyl-6-nitrocyclohexa-2,4-dienones thus appears to be a general reaction of 2-alkylphenols.

References:

- 1. V.V. Ershov, A.A. Volod'kin and G.N. Bogdanov, Russ. Chem. Rev., 32, 75 (1963).
- 2. A.J. Waring, Adv. Alicyclic Chem., 1, 172 (1966).
- D.J. Blackstock, M.P. Hartshorn, A.J. Lewis, K.E. Richards, J. Vaughan and G.J. Wright, J. Chem. Soc., B, 1212 (1971).
- 4. A. Fischer and D.R.A. Leonard, J.C.S. Chem. Comm., 300 (1973).
- 5. A.H. Clemens, M.P. Hartshorn, K.E. Richards and G.J. Wright, Aust. J. Chem., 30, 113 (1977).
- 6. C.E. Barnes, K.S. Feldman, M.W. Johnson, H.W. H. Lee and P.C. Myhre, J. Org. Chem., 44, 3925 (1979).
- 7. R.G. Coombes, J.G. Golding and P. Hadjigeorgiou, J.C.S. Perkin II, 1451 (1979).
- 8. A. Fischer and J.N. Ramsay, Can. J. Chem., 52, 3960 (1974).
- 9. C.E. Barnes and P.C. Myhre, J. Amer. Chem. Soc., 100, 973 (1978).

(Received in USA 21 August 1980)